## Тест для выявления математических способностей

## 10 - 11 классы

### Задача 1.

Последовательность чисел  $t_1, t_2, t_3, \dots$  определяется соотношениями  $t_1 = 7, t_{n+1} = \sqrt{\left|t_n^2 - 16\right|}$  .

Квадрат числа  $t_{2013}$  равен...

**A)** 
$$\sqrt{15}$$
; **B)**  $\sqrt{17}$ ; **B)**  $79\sqrt{33}$ ; **Г)** 1;  $\cancel{\bot}$ 0,  $\sqrt{6384}$ .

#### Задача 2.

Куб с ребром 10 разделен на две части плоскостью АВС (рис. 1). Объем меньшей части равен ...

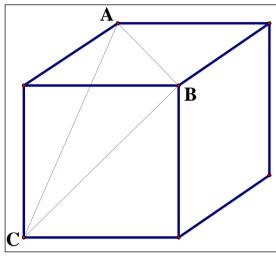



Рис. 1

**A)** 
$$200\sqrt{2}$$
; **Б)**  $100\sqrt{2}$ ; **B)**  $333\frac{1}{3}$ ; **Г)**  $250$ ; **Д)**  $166\frac{2}{3}$ .

#### Залача 3.

Для многочлена  $P(x) = (x^3 - x + 1)^{27} (x^2 + x - 1)^{49}$  найдите сумму коэффициентов при нечетных степенях x.

**A)** – 1; **Б)** 1; **B)** 6; 
$$\Gamma$$
) – 3;  $\mathcal{I}$ ) 2011.

#### Задача 4.

Каждая из четырех окружностей, изображенных на рис. 2, касается трех остальных. Если радиус каждой из маленьких окружностей равен r, то радиус большой окружности равен ...

A) 
$$\frac{2+\sqrt{3}}{\sqrt{3}}r$$
; B)  $(1+\sqrt{3})r$ ; B)  $\frac{3\sqrt{3}+4}{4}$ ;  $\Gamma$ )  $(2+\sqrt{3})r$ ;  $\Lambda$ )  $(2+\sqrt{3})r$ ;  $\Lambda$ )



Рис. 2

#### Задача 5.

При каких целых значениях x и y значение выражения  $x^2 - xy - 2y^2$  равно единице? В ответ запишите количество таких пар.

#### Задача 6.

Найдите сумму

$$4 - \frac{8}{3} + \frac{16}{8} - \frac{32}{27} + \dots 4 \cdot \left(-\frac{2}{3}\right)^{n-1} + \dots$$
**A)** 1,84; **Б)** 1,68; **B)** 2,5; **Г)** 2,4; **Д)** 3,6.

### Задача 7.

Квадратное уравнение, корни которого на три единицы больше корней уравнения  $x^2 + 3x - 3 = 0$ , имеет вид  $x^2 - bx + c = 0$ . Найдите 2b + c. **А)** 4; **Б)** 6; **B)** 5; **Г)** 2; **Д)** 3.

#### Задача 8.

Вычислите

$$\sqrt[3]{\frac{2013^3 + 2013^2 + 2013 \cdot 2014 + 2014^2 + 2014^3}{2}}$$

**A)** 4016; **Б)** 6001/2; **B)** 2012,25; **Γ)** 2014; **Д)** 2013.

#### Задача 9.

Сколько корней имеет уравнение

$$\sqrt{x+6-2x^2} \cdot \cos(\pi x) = 0_{\,9}$$

**А)** 4; **Б)** 5; **В)** 6; **Г)** Ни одного; **Д)** Бесконечно много.

#### Задача 10.

Используя определение факториала  $n!=1\cdot 2\cdot 3\cdot ...\cdot n$ , сократите дробь

$$\frac{n!}{(n+1)!-n!}$$
**A)**  $\frac{1}{n-1}$ ; **Б)**  $\frac{1}{n+1}$ ; **B)**  $\frac{1}{n}$ ;  $\Gamma$ )  $\frac{2}{n}$ ;  $\Pi$ )  $\frac{4}{n}$ .

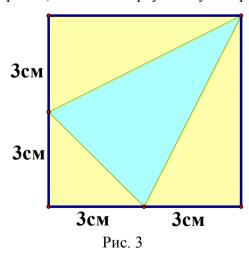
#### Задача 11.

Написали три числа, отличные от нуля. Затем взяли их сумму, произведение и сумму попарных произведений. В результате получили те же три числа в том же порядке. Какие числа могли быть записаны? В ответе напишите их сумму.

**A)** 0; **Б)** 6; **B)** 
$$-1$$
;  $\Gamma$ )  $-2$ ;  $\Pi$ )  $-3$ .

#### Задача 12.

Решите уравнение  $2^{\left[x^2-4\right]}=3^{\left[\frac{1}{x}\right]}$ .


**A)** 
$$[1; \sqrt{5})$$
; **Б)**  $[2,5; \sqrt{5})$ ; **B)**  $[2; \sqrt{7})$ ;  $\Gamma$ ) Нет решений;  $\Pi$ )  $[2; \sqrt{5})$ .

#### Задача 13.

Решите уравнение 
$$\frac{x-1}{x^2} + \frac{x-2}{x^2} + \frac{x-3}{x^2} + \dots + \frac{1}{x^2} = \frac{7}{15}$$
, где  $x-$  натуральное число. В ответ запишите остаток от деления корня этого уравнения на 6.

#### Задача 14.

Квадратный лист бумаги со стороной 6 см перегнули по пунктирным линиям, показанным на рис. 3, и сложили треугольную пирамиду. Найдите ее объем.



**A)** 8 см
$$^3$$
; **Б)** 9 см $^3$ ; **B)** 11 см $^3$ ; **Г)** 15 см $^3$ ; **Д)** 16см $^3$ .

# Задача 15.

Чему равна сумма 
$$4\sin 20^{\circ} + tg 20^{\circ}$$
?

**А)**1,5; **Б)**  $2\sqrt{2}$ ; **В)**  $\sqrt{3}$ ;  $\Gamma$ )  $\sqrt{5}$ ; Д) 0,5.